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Determination of the Correlation Spectrum
of Oscillators with Low Noise

FRANZ X. KAERTNER

Abstract —A generaf expression for the correlation spectrnm of an

oscillator, described by a set of nonlinear ordinary differential equations

with intrinsic noise sources, is derived by a first-order perturbation theory.

The analytical derivations are well suited to the numerical determination of

the correlation spectrum by Poincar6 mapping methods. The theory is

applied tO a lumped circuit model of a Colpitts oscillator. The noise

behavior of complex oscillator circuits used in microwave engineering may

be simulated by the derived method.

I. INTRODUCTION

T HE THEORIES presented in most papers on noise in

oscillators allow a good qualitative understanding of

the noise behavior of oscillators [1], [10] and give rules for

the design of low-noise oscillators. But the procedures used

for this approach are not suitable for calculating the noise

spectra of oscillators on the basis of the large-signal mod-

els of active components with the various intrinsic noise

sources of the active and passive components.

In this paper, a general time-domain analysis of noise in

oscillators is presented. In Section II a precise definition of

the problem treated here is given. Assumptions about the

noise sources, which can be simulated with the presented

formalism, are also outlined. In Section III the inherent

stochastic processes of an oscillator are derived by a first-

order perturbation theory. A general expression for the

correlation matrix of an oscillator is derived in Section IV.

In Section V we present numerical techniques for deter-

mining the complete correlation matrix or correlation spec-

trum of an oscillator signal. Finally in Section VI we will

apply the formalism presented here to a Colpitts oscillator

where the transistor is modeled by an Ebers–Moll equiva-

lent circuit.

II. OUTLINE OF THE PROBLEM

A dynamical system is described by a set of N first-order

nonlinear differential equations:

(1)

The components xi of the vector ~ uniquely determine the

state of the system. In electrical systems, these state vari-

ables are the linear independent voltages at the capacitors

and the currents through the inductors. These variables

determine the energy stored in the network [11]. The vector
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~ describes the stochastic noise sources, which are always

present in dissipative systems [12]. If the system equation

(1) descirbes an oscillator without external synchronisa-

tion, the right-hand side of (1) does not explicitly depend

on time; i.e., the system without the noise sources is

autonomous. In electrical oscillators the noise sources are

very small in comparison with the state variables. Thus it

is sufficient to take into account the noise sources up to

first order. Thus we obtain

where G(i) G ~ N X B?K with elements

(2)

(3)

Thus G(i) describes the influence of the noise sources on

the state variables and also the modulation of the intensity

of the noise sources by the state variables, as in the case of

shot noise, where the intensity of noise is proportional to

the current through the components. This will be discussed

in detail in the example given in Section VI. Furthermore

we shall assume that the noise sources given by (are white

and Gaussian.

Thus the statistics of the noise sources are completely

described by [13]

(f,(t))=~ (5)

P(F)= ((2~”Af)Kdet(r) )-1’2

[1
~~r-1~

. exp –
2.Af

(6)

I’ is the correlation matrix of the ~-dimensional stationary

noise process, and Af is the bandwidth with which the

probability distribution was measured. This restriction to

white noise sources does not preclude simulating the influ-

ence of colored noise because we can extend our original

system given by (2) by a linear system L, which produces

the colored noise out of the white sources:

(7)
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Fig. 1. Separation of the perturbed motion into normal and tangential

deviations.

If we denote the vector (1, j’) as the new state vector, we

have a problem of the same kind as stated above.

Since the differential equation (1) describes an ~scilla-

tor, the solution of the unperturbed system, setting .$’(t)=

6, is the stable limit cycle lo(t) with period To. The noise

sources produce deviations from this stable limit cycle,

broadening the oscillator’s spectrum. In the following the

complete spectrum of an oscillator is derived by interpret-

ing the differential equation (2) as a stochastic Ito differen-

tial equation [14], [15]:

d~= ~(:) dt + G(7) dti(t) (8)

(dti(t))=O (9)

(d@(t) dti(tr)) = 17#,,,,dt. (lo)

With these assumptions we will derive the stochastic pro-

cesses for the amplitude and phase of an oscillator. These

processes will be Markov processes because of the assumed

whiteness of the noise sources.

III. DERIVATION OF AMPLITUDE AND PHASE PROCESS

The noise sources ~(t) force the oscillator signal I(t)to

deviate from the limit cycle fl(t),which is a closed orbit

in the N-dimensional phase space of the possible states Z

of the system (see Fig. 1). Since the limit cycle is stable, the

deviations perpendicular to the limit cycle may remain

small. The deviations in the direction of the unperturbed

orbit, however, may become unbounded in time, even

though x7( t)and 7(t) have the same initial values. This is

possible because the differential equation (2) is au-

tonomous without the noise sources. To be able to use

perturbation methods we separate the solution Y(t) as

shown in Fig. 1:

~(t) =#(t+$(t))+AZL (t+ O(t)). (11)

The stochastic variable i(t) can be separated in the part

AZL (t + O(t)), which is an element of the orthogonal

complement space M(t) to the tangent space at the limit

cycle at point x%( t+ ii(t))and the time-shifted solution

xa(t + O(t)) of the unperturbed equation [16]. The

stochastic timeshift 8(t) leads to a random phase modula-

tion in the unperturbed solution, as we will see later on.

Therefore ii(t)determines the phase process of the oscilla-
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tor and we will call Ail the amplitude process. By this

subdivision of the signal the relation

,IIAY1 II < l@ll (12)

is valid for every time t.With the statement given by (11)

we can derive two separate differential equations for am-

plitude and phase processes. Inserting (11) into (2) and

neglecting terms of higher order in AIL, 1$ and the noise

sources ~, we obtain

xQ’(y)~+ Ai’’ (y)

=DF(X0(y))A31 (y)+ G(7°(y)):(t(y)) (13)

with

aq(q
DF(i’O(Y)),l ‘ ~

and

y=t+o(t), (15)

The bar denotes the derivation with respect to the argu-

ment. We define the tangent vector 7(t) at the unper-

turbed orbit X“(t) by

#(t)
ii(t)= LO

11X(t)l[
(16)

and the projection operator P(t) by

P(t) =l–z-(t). F(t)T. (17)

P(t) projects onto the hyperplane orthogonal to the orbit

5?0(t).From

7(t)~.A7~ (t) =0 [18)

we obtain the identity

#(t)~AXl (t) = –i(t)=A~~ (t). (19)

By application of the projector P(y) to (13) and with (19)

we obtain

;A~l(y) = V(y) A~l(y)+Q(y)r (t(y)) (20)

for the amplitude process, with the abbreviations

V(y) =P(y)DF(iO(y)) -ii(y) ii’(y)’T (21a)

Q(Y) =~(Y)G(Y)- (21b)

From the scalar product of ii’(y) with (13), we obtain

the equation describing the phase process:

$(t) =~(y)A:l (y)+ ~(y)~ (t(y)) (22)

with

B(Y) =
Z(y) TDF(X4(y))+ ii(y)”

(23a)
@O’( y)ll

ii(y) TG(y)
a(y) =

IIE”’(y)ll “
(23b)
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From (20) it can be seen that the amplitude process is

described by a linear inhomogeneous differential equation

with periodic coefficients. Therefore we can write the

amplitude process

where *( y,s ) is the fundamental matrix of the homoge-

neous differential equation [17]. The integral is taken from

infinity to achieve independence of initial conditions. Since

the limit cycle is stable, N – 1 Floquet exponents of the

fundamental matrix must have negative real parts. One of

the Floquet exponents is – cc because of the projection

operator involved in equation (20) (see the Appendix). The

phase process described by (22) can be integrated directly.

For this we substitute the differential dt for dy according

to (15):

dy=(l+i$(t))dt (25)

and obtain

(26)

For the determination of 8(t) up to first order in the

noise sources, we can neglect 0(t) at the upper integration

range. The physical significance of the derived stochastic

processes for amplitude and phase, described by (24) and

(26), is well known. The amplitude process is a multivari-

ate Ornstein–Uhlenbeck process with periodic coefficients

[15], [18]. And the phase process is a diffusion process [15],

[19], which is driven partly by the amplitude deviations via

the amplitude phase conversion matrix ~ and partly by the

noise sources.

IV. THE CORRELATION SPECTRUM OF AN

OSCILLATOR SIGNAL

The correlation matrix of a stationary stochastic process

I(t) is defined as follows [20]:

If we put (11) into (27) we obtain for the correlation

matrix

cxx(7)= cxOx0(~)+cx0Ax(T)

+ CAXX”(T)+ CA. A.(T)

(28)

1JT(x+(t+7+8(t+ T))CXOXO( T) = Iim –
T-+m T o

(30)

,+m;JT(Ai.(t+~+~(t+~))C~XXO( T) = lim

.x*t(t+O(t)))dt (31)

.(t+~+O(t +r))A2~(t +0(t) ))dt. (32)

Equation (29) describes the phase noise, (30) and (31)

describe the correlations between phase and amplitude

noise, and (32) describes the amplitude noise. These parts

of the correlation matrix will be subsequently calculated.

Therefore we expand the limit cycle -i?”(t)with period To

into a Fourier series:

A. Determination of the Phase Noise

According to (29) the phase noise is given by

The ensemble average in (34) does not depend on time t,

as we will see later on; therefore we can separate the time

average and the ensemble average. The integral in (34) is a

Kronecker symbol in the limit:

Thus we obtain

(35)

where

+(72,T) = (ejn(~(f+”)-q(f))) (37)

and

~(t) =Uol$(t). (38)

This definition of the phase helps us to avoid the often-used

instantaneous frequency discussed in [21], [22], which has

no physical significance.

The function @(n. r) is the characteristic function of the
stochastic variable Ap (t, T) describing the phase difference

between t+ T and t [23], [24]:

o(~,~) = (eJ”A~(f,’)) (39)

A~(t, ~)=(p(t+~)-q(t). (40)

~rom a knowledge of the characteristic function we can

calculate the correlation matrix CXOXO( I-) according to (36).

The ccm-lation spectrum due to phase noise can be ob-

tained by Fourier transformation of the correlation matrix:
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with

q(f) =%{$(n, T)}. (42)

Thus the Fourier transform of the characteristic func-

tion uniquely determines the spectral shape of the n th

harmonic. For the calculation of the characteristic function

we need the probability distribution of phase rp ( t ). Since

we have only assumed white Gaussian noise sources, the

phase has to be a Gaussian distributed Markov process

because of the linear dependence on the noise sources

according to (20) and (22). Taking the case of non-Gaus-

sian noise sources, the probability distribution of the phase

becomes Gaussian in the course of time due to the central

limit theorem. Therefore the assumption of a Gaussian

distributed phase may be taken as an approximation in the

case of non-Gaussian noise sources as well. Thus we can

make the following statement for the conditional probabil-

ity of the phase q:

P(9>~/To,~o) = (2@Po,t-to))-1’2

.exp

with

u(90>~–~o)=((fl

TJo=9(~o).

_ (9-90)2

2u(rpo, t-to)

t)–cp(to))’)

(43a)

(43b)

(43C)

The variance of the phase depends only on the time

difference and the initial value of the Markov process on

the limit cycle. Therefore the variance is periodic in To

with a period of 2 n because of the periodicity of the limit

cycle. The joint probability distribution is given by

P(9>~;907~o) =P(P7f/90> ~o)P(90, ~o). (44)

With (39) and (44) we obtain

+m

“P(9t+#ft)P(%)} ~W+,~%. (45)

Inserting eq. (43a) into (45) and replacing the phase differ-

ence CPt+,– q~ with &, we Cm do the integration about
Aq and obtain

Since the variance is periodic in p,, we make the following

Fourier expansion:

+W

u(q, ~) = ~ u~(r)e~~~ (47a)
~.—~

with

As can be seen from (26), only UO(T) can increase with r,

whereas u~( T) is always of the order of r for m # O.
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Therefore we obtain

‘(nT)=exp(-:uo(7))”(’+o(n4r2)’ ’48)

since rpt is equally distributed on the interval O to 2 r. Thus

the characteristic function is fully determined up to first

order by the averaged variance Uo(~):

(49)

The averaged variance can easily be calculated with (24),

(26), and (43b) by the Ito calculus. Thus we obtain in first

order of r

u(t, T) =@;
[J

‘+ ’a(y) rcY,(y)~dy +2 J’+’fJ(y)

Jyk){wlw
t

1+Q(z)h(z)T} dzdy . (50)

We have replaced q with t and have introduced the

amplitude fluctuation matrix

~(Z) =jz ?%(z,,s)Q(,s)rQ( s)~T(z, s)~ds. (51)
—w

The quantity o(t, T) is periodic in the variable t with

period To. To obtain the averaged variance Uo(~) we have

to average over one period in t according to (47b). There-

fore we obtain

UO(7)=UJI)( T)+ UJ’)(T) (52a)

with

0~’)(~) ‘~~”~:~r+’a(~)ra(~)’d~dt (52b)
t

X {R(z) ~(z) T+ Q(z) I’a(z)~} dzdydt. (52c)

Since the integrand in (52b) is also periodic we obtain, for

the first part of the phase fluctuations,

U$1)(7) =dll~l (53a)

where

d~=~;;~o~(~)r~(~)’d~ (53b)

To gain greater insight into the second part of the phase

fluctuations we use the presentation of the fundamental

matrix *(y, z) given in the Appendix:

*(y, z) = ; e~ltY-zJti,(y)~T(z) (A1O)
~=’2

where q, is the Floquet exponent belonging to ii,(t), which

is the periodic part of one of the fundamental solutions of

the linear and time periodic differential equation (20), and

~(t) is the corresponding periodic part of the fundamental
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solution of the adjoint equation to (20) (see the Appendix).

Thus we can calculate the elements ~fl(z) of the matrix

R(z) on the basis of the ii,(z):

R(z) = f f q(z)ili(z)ii:(z) (54)
,=2jx=’2

by inserting the representation of the fundamental matrix

given in (A1O) into (51). From this we obtain

!
R;(z)= z ~(~, +~,)(z–s)~T(s )~(s)rQ(s)T~(s) ds.

—w

(55)

Dividing the interval of integration in intervals of length

To and using the periodicity of the second part of the

integrand, we obtain

R:(z)= 1 J
TOe(~, +T,)(TO-~)~T(t+ z)Q(t + z)

1 – ~(%+v,)~” ~

xrQT(t+z)~(t+z)dt. (56)

Thus we can calculate these matrix elements by integrating

only over a single period. htserting (A1O) and (54) into

(52c) and using the orthogonality relations (A12) in the

Appendix, we obtain

2 ~ /’+”C,(y)JYe”’(’-z)~, (z) dzd!u@(t, T) =2@.

ksz t t

(57)

with the periodic scalar functions

Ck(y)=fl(y)iik(y) (58a)

Dk(z) = i [Ry, (z)c, (z)] + F:(z) Q(z)ra(z)T.
1=2

(58b)

From (57) one can see that every fundamental solution

k >2 of the linear and time periodic differential equation

(20) makes a contribution

‘2)(~~) =2Q:~’+’ck(Y)~ye”’’’-’)~k(z)~z~Y (59)ok

to the second part of the phase fluctuations:

(60)u@)(t, T) = f u$)(t,7).

k=2

Thus we obtain for the contribution of the k th solution to

the averaged phase fluctuations

uok(~) =*JTO@(f)T)df. (61)

The integrations in (59) and (61) can be carried out by

substituting the corresponding Fourier series for the peri-

odic functions Ck(t) and Dk(t )

Ck(t) = ‘~~ ~k,.ejnoo’ (62a)
n=—m

+(Y3

D~(t) = ~ ~~,~eJn”” (62b)
~=—~

into (59). With relation (35) we obtain

k=2n=–m

with coefficients

a~,fi = 2c.+@~ ~fi~ _~ (64),,

and structural functions

Sk,.(r) = –(q~-t jn~o)-2–(q~+ jntio)-lr

+ (q~ + jntio) ‘2e(q’+jH@O)”. (65)

Now we can collect all terms and obtain the following

relationship for the time dependence of the averaged phase

fluctuations UO(T):

UO(T)=~+ D91Tl+G(lTl)- (66a)

Where from (52a) to (65) for the damping factor A we

obtain

N

-4= – ‘~m ~ a~,.(q~+ jnuo)-z (66b)
~x–~kcz

for the diffusion constant of the phase D@,

N

DP= ~d~ (66C)
L=l

with dl according to (53b) and d~ for k >1 by (63) and

(65):

d~= – ‘~w a~,n(q~+ jnao)-l. (66d)
fl=-~

Finally for the function G(7) we obtain

G(7) = f g~(~) (66e)
k=’

with

+Cc

g~(~) = Z a~,n(q~ + jnoo)-2e(q’+~”’’’o)’. (66f)
~x—~

With (66a) we can calculate the spectral shape of the n th

harmonic F.(f) produced by phase noise according to

(42), (49), and (66a):

([ 1}Fn(f) =% exp –~(A+Dvl~I+G(ITI)) . (67)

And we obtain with the folding theorem of the Fourier

transformation

Fn(f) = e-”2~/2%{e-(”2~~/2)1’1}*%{ e-”2G(l’1)/2}. (68)

The function G( 1TI) vanishes for ~ - w and is always of

the order of 17 for [~1 >0, which means G( 1~1)<<1 for all

~. Therefore we can expand the exponential in G( I~ 1)up to

first order. If we ad~tionally assume that n 2DP/2 <<

–Re{qk},2<k<N, we obtain

F.(f) =e- ‘2~i2[%{e-”2~91’1i2} - .%{n2G(lTl)/2}].

(69)
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These assumptions are well fulfilled in electrical oscillators

due to the weakness of the noise sources. The Fourier

transforms in (69) can easily be carried out since we have

only to trWsform exponential which lead to Lorenzian

lines. Therefore we obtain

Fn(f)=FJo)(f) +FJl)(f)

(70a)

The summation over i with indices r and c, respectively,

denotes summation over those i‘s with real Floquet expo-

nents q, and a pair of conjugate complex Floquet expo-

nents qi = q; ~ jqj’. Also we have used the relations u~~

= a,+l,–w, where q, and q,+ 1 are a pair of conjugate
complex Floquet exponents. As we see from (70b) the

main part of the spectrum is a Lorenzian line with 3 dB

half-bandwidth A f3dB = n2Dq/4v. The other parts of

Ft”)( f ) are also centered on f = O, where those parts with

u Re { TJ,} << U. dominate. Therefore this function is

strongly peaked at f = O. F})(f) consists of those parts

centered on f = mfo, m + O. And in this function the terms

with – Re { q, } >> co. cause a broad spectrum. Thus FJ1)( f )

only contribute to the noise floor of an oscillator. This

noise floor is produced by the fast relaxing normal modes.

From (70a) –(70c) one can see that the phase noise spec-

trum is fully determined by the Floquet exponents and the

coefficients a~, ~, which determine the coupling of the

noise sources to the k th mode of the time periodic system

and the conversion into phase fluctuations.

–2
+ rz2~ Im { ai,oqi } B. Determination of the Correlation Between Amplitude

z. and Phase

“[ ‘q:+27Tf ‘i’ –27rf 1)
From (30) and (31) the following identities can be

+ derived:
?# + (2mf + q~)2 q;z + (27rf – q:)’

(70b) CAXXO(’T) = cxo~x(– T)T (71a)

H
&.XO(f) ‘~Xo&(f)t. (71b)

FJ1)(f)=e
-.2,4/2 n2~ ~ Re{ai,~(q, + ~m%-21 ~30~ and (33) we obtainThus we can restrict ourselves to calculate C’O AX( T). From

i, m=l

[

– n, – ‘n,

1

lT
x + CXOAX(‘T) = ‘~mzme~m”o’ $+mm ~ ~ (e J”%(’’~(’))

q;+ (27rf + muo)2 TJ:+ (2%’f – ??UJO)2 m=—w

[

. eJm~o($(t+T)-$(~l) &’~ (t + ~(t))) dt. (72)
mtio+2rf

–Im{al,~(~,+j~~o)-2} ~;+(2Wf+m@ )2
First we average over all realizations of the processes with

o the same O(t) and later we take the average about IY(t).

mao–27rf 1)
Therefore we calculate the average

+
q?+ (2mf – mtio)2

KT= (e~m~.($(~+,)-$([))Ai~(t + a(l)) )$(t) =const,. (73)

We introduce the characteristic time constants ~~ and ~C,

+n’~ ~

{

Re[al, ~(ql + jm@o)-2] which are defined as follows:

~c ~=.~
OO(TH) = (27r)2 (74a)

[

– 1
x ~C=l/Re{–q} (74b)

qj2 + (27rf + q? + mao)2 where q is the largest negative Floquet exponent of the

– 1 1
fundamental matrix V. Thus r, is the correlation time

+ between the amplitude fluctuations, and ~~ is the time
~;’ + (27rf – q; – moo)’ after which the phase fluctuations cover the whole limit

‘Im(ai,~(qi +jm%)-2)
cycle. From (66a), we obtain for the time r~ = (2n)2/DV
—— n\A f3 ~B (n =1). If the intensities of the noise sources

“[

TJ~’+ moo +27rf are small, the relation ~C<< ~~ holds. In electrical oscilla-
tors this condition is excellently fulfilled. Therefore we can

TI;2 + (277f + qfl + mao)2
separate iT as follows:

1{+ m~o –2~f
+ 11) (70C)

~T= (eJmU,($(t+T)-O(t+Tc))

muO(W+WW)q (t + ti (t)) ))$(t)=const.
‘X2+ (2rf – q~– mcdO)2 “ .{eJ (75)
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since the amplitude is not correlated with the increase of where

phase at times later than ~C.On the other hand UO(I-C)<<1. ,.

Therefore we can expand the exponential function in the ~1~,1= ‘k,l?kTn-/(qk + jl@~)-l

inner average in (75) and we can also neglect ~Cin the first

exponential function for r >> ~C. In this way we obtain, ~Z~,l=–~k,l;Zn_l(?k– jlm~)-l. (84)

with (24), (26), and (37), up to first order in r, By (83) and (66a), we obtain up to first order in r

(76) @(m,, )ti_m(T)T= jimm~:,zsm,[X’(T>>‘Tc)T=jmq@(nz,T) ti(z,7)T

with

1
fz+’p(y)T(y,z)R(z) dY> T>(I . (e(m*JWITl _l)(e-W2(~+~v1Tt)/7 (85)

F(Z, T)T= ~-’’’{ l3(Y)R(Y)

where the plus sign holds for ~ >0 and the minus sign for

r <0. By Fourier transformation we obtain, with (78),
~.

\ +a(y)r~(y)’}v(z,y)’dy -0 ~oAx~f~=e-w2 ~ jmtio f Z
m

(77) x
~.—~ k=2

and z = t + IY(t). fl(z, ~) is periodic with period To with [i::m(f)+s;: m(f)] (86)

respect to the variable z. Thus we obtain for the correla- with
tion matrix CXO~X,according to (72), (73), and (76),

F:!m(f) = ‘~m q::m ~
CXOAX(T) = ‘Em jmuo~(m, ~)A+~fi_~(7)~e~muo’ (78) I=–co ‘ ‘

~.—~

where we have set

fin=+fO@de-’n”Ozdz (79)

This result is also valid for ~ < ~C,as one can easily see

from (75)–(78), since @(m, ~) s 1 for ~ < ~,. The multipli-

cation of H+m(~) with @(m, r) is ~ecessary to avoid singu-

larities in the spectrum, because H~( ~) does not vanish for

~ s co. With the relation (A1O) we obtain from (77),

with Ck( y ), Dk( y ) according to (58a) and (58b), and

~~(z) = f R:’(z) i2J~(z). (81)
j=z

With the Fourier expansions for Ck( y), Dk( y) according

to (62a) and (62b), and

“1 1

–qj+m2Dp/2+ j(2nf–q~–(m+l)@O)

1
—

m2Dq/2+ j(2rf – m~o) I
F::.(f) = ‘Em q::m /

[=–cc ‘ ‘

“[

1

–qj+mzDP/2– j(2~f +q\–(m+l)uo)

1 1 (87)
m2DP/2– j(2nf – moo) “

With (71b) and (86) the correlation spectrum due to phase

amplitude correlations is known.

C. Determination of Amplitude Noise

The last term in (28) describes the amplitude noise.

From (32) follows

%-A.(-~)=c AxAx(~)T (88a)

‘AxAx(f) =&{o(T)CA.A&)}

+~{6(T)CAxA.Y(T)}* (88b)

with

Le(r) = : Tao
‘r <o. (88C)

Thus we can restrict ourselves to the case I-> O. With (32),

(24), and (51) we obtain

(83) t+ O(t)) R(t+O(t)))dt. (89)
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Now we replace t + ~(t) with z and the differential dt

with dz. Since the fundamental matrix is only nonzero for

~ < 7C, we can neglect the time difference il(t + ~) – @(t)

in the argument of Y. Thus we obtain

/(CAXAX(T) = : ‘0Y z+~, z)l?(z)dz
To o

(90)

since the integrand is periodic in z with period T 0. With

(A1O), (54), and (81) we obtain

By the Fourier expansions according to (82a) and (82b) we

obtain

k=2m=–w

The correlation spectrum of the amplitude noise can be

calculated by (88b) and the expression for the correlation

matrix (92) for time ~ >0

‘A. A.(f)

where we have used the relations ~~, ~ = iik + ~,_~ and

?j~–~ = fi+ ~,~. Now the complete spectrum of an oscillator

is formally derived and we can tackle the problem of the

numerical determination of the correlation spectra given

above.

V. NUMERICAL PROCEDURE FOR THE

DETERMINATION OF THE CORRELATION SPECTRUM

In this section a numerical procedure for the determina-

tion of the correlation matrices calculated in Section IV is

given. Therefore we replace the continuous stochastic pro-

cesses derived in Section III by time discrete processes.

The discretization in time is achieved by Poincark mapping

[25], as shown in Fig. 2. We assume that the limit cycle

~“( t) with period T 0 is known. The limit cycle is a curve

in R‘, which is parameterized by time from O < t< T 0. We

choose M equidistant points Z: on the limit cycle, as

follows:

To
~~=~”(t,) with t,=i”At, l<i <M, At=fi. (94)

By these points the hyperplanes X, with Z; ● ~. and

normal vectors

are defined. The flux of the unperturbed differential equa-

tion (2) describes a nonlinear mapping of a deviation

A~~_ ~ at point Y,_ ~ onto a deviation Al?, at point ~~

x
n

“f_l
/

‘1 I

Fig. 2. Time discretization by Poincar4 mapping.

Fig. 3. Mapping of deviation by the flux of the unperturbed system.

during a time interval At. That is,

A~i=~i(A1i_l). (96)

See Fig. 3. In particular the hyperplane #i_ ~ is mapped,

onto the curved area ~., (s~e Fig. 2). For small deviations

A-i_ ~ the nonlinear map Bi can be linearized. Thus we

obtain the matrix B, with elements

(97)

and with (96)

A?z = BzAZ, _l. (98)

Now we separate the map, which describes the evolution of

the normal deviation from the unperturbed orbit. There-

fore we introduce the projection operator P, by

P,= (1– 2,7:) (99)

and obtain for the normal deviation

Ai’LL =Ai A3LZ_1 (100a)

where

A=~B,. (100b)

By multiplication of the mapping matrices A ~ over one

period,
M

.
~=1

I

we obtain the matrix A ~, which describes the time evolu-
tion of a normal deviation A Zl after one revolution

around the limit cvcle (see Fi.z. 4).. . -.
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A .“”--–---’.

1
\

$:]
\\

L&l(o) I

‘&+’(To ) I

,/” /1
/ //

If
I
\

\ ‘M/$””//
‘-. ----

Fig. 4. Mapping of a deviation after one revolution around the limit
cycle Z“ by the Poincar$ map Ag.

This linearized Poincar6 map A ~ is equivalent to the

fundamental matrix

T(z-o,o)=Ag (102)

which also describes the time evolution of the normal

deviation over one period. With (AlO) of the Appendix we

obtain

,=2

where we have used ii, ( To) = ii,(0) due to the periodicity

of the iii.

From this relation and with (A12) we can see that i7Z(0)

and ~(0) are the right- and left-sided eigenvectors of the

matrix A ~:

Agili (o)= A,ii(o) (104a)

+(o)q.qo)A~= Aiut (104b)

Towith eigenvalue A* = e ~1 .

The solutions Z,(t) and ~.(t) can be determined subse-

quently at the points t = jAt by the recurrence relations

~T(jAt) = e-OA~T((j+l) At)Aj+l (105b)

since

A1=T(i At, (i–l) At). (106)

The vectors IT(0) have to be normalized at the beginning

of the iteration to fulfill relation (A12). The matrices ~,

can be obtained by numerical differentiation techniques

according to (23a). Therefore with this construction of the

basis ii, and the corresponding basis ~~ of the dual space,

we can calculate the spectra derived above. The integra-

tions which have to be carried out above can be done by

interpolation of the integrand with cubic splines.

VI. NUMERICAL EXAMPLE: COLPITTS OSCILLATOR

To convey an idea of the applicability of the theory

described above we will calculate tlie phase noise spectrum

of the Colpitts oscillator shown in Fig. 5 in the neighbor-

~ ‘0=“v
o‘1 b‘2

I ‘NR1
4

‘NR2

L1

~1
i2

C4
$ ‘1

‘1

i : “ ‘i

L2

‘4 ‘c
C3 1

C2 ‘2

‘L ~

1

‘B

‘NRL ‘3

-L

Fig. 5. Anafyzed Colpltts oscillator circuit. The vahres of the compo-
nents are RI = 350 Q, R2 =110 kfl, RL = 500 L?, L1 =10 pH, Lz =

30 nH, Cl =10 pF, Cz = 940 pF, C3 = 2,7 nF, Cd =1.5 nF, T= BFR
35 A.

hood of the oscillation frequency ~0, which is given by the

function F~Ol(~ – ~o). The transistor BFR 35 A is modeled

by a Ebers-Moll equivalent circuit [26], shown in Fig. 6.

Transistor parameters are taken from the paper by

Schwaderer [27]. From the lumped circuit models shown in

Figs. 5 and 6, we can derive the equations of motion for

the state vector X= (il, iz, Ml, Uz, us, Ud) = R!

(107)

j2=++u2)+G@ (108)
2

( )

;Ul=: il–i2–ic+&-ul) +Gq(2’)~ (109)
1 L

dl

(“ZU2=< lb )
–i2–&o+u2+u3) +G4(i)~

2

(110)

( )-&=+ ib–&o+u2+u3) +G5(7)F (111)
3 2

d
;U4= ##l-u, )+ G,(Z)r (112)

L4

where the currents in the transistor are given by

iC = ic~ — i~c (113)

ib = iBE + iBc (114)

1s [exp(u~~/uT) -exp(uBc/u~)] (115)
lc’ = Qt/Qbo

4[exp(u,E/uT) -1] (116)
‘BE = l%

i,c=~[exp(uBc/u, )-l] (117)
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L

1i
c

‘NE

‘ BC
/ i NC

~B
‘b

i BE

6

E
Fig. 6. Ebers–Moll equivalent circoit for the transistor BFR 35 A.

I. =1.27 .10-16A, & = 5.5, & =140, UA =15 V, UB = 4.3 V.

with

UBE=— U2— U3 (118)

U~~=— U~— U2— U3 (119)

Q/) UBE ● UBC
—=1+— —
Q,, ‘b U “

(120)

The thermal noise sources of the resistors and the shot

noise sources of the pn jun:tions in the transistor produce

the stochastic forces G,(i)&, which are given by

1
GI(7)F= – ~UNRL

1

G2(X)F=0

1 1
G3(7)F= & UNRL — “

IL F)JE + @’Jc

1 1
G4(X)F= & UNR2 + —iNB + —iNc

22 C2 C2

1 1
G5(2)F= & UNR2 + —iNB + —iNc

32 C3 C3

G6(Z)F= – + ‘NRL -

4L

For the thermal and shot noise sources we obtain

{‘NE = diCEl$4

iNB=m’55

riNc = qltBcl ‘$6.

From (126) to (132) we obtain the matrix

a(Gir)
Gzj(i’) = at,

J

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

I
,.-3 , ~-1

10’ I 03 105 I 07

fm [Hz]

Fig. 7. Single sideband phase noise of the Colpitts oscillator shown in
Fig. 5.

where the <, are normalized white Gaussian noise sources

with correlation coefficients

(’$itj) = ai,j (134)

Thus the system equations are of the type discussed above.

Note that those matrix elements Gij(~) which describe the

influence of the shot noise sources in the transistor explic-

itly depend on the state of the system via (115)–(117) and

(130)-(133) as discussed in Section II.

Application of the theory presented above results in the

phase noise spectrum F/OJ(~). The power spectrum of the

oscillator circuit shown in Fig. 5 is proportional to the

correlation spectrum of the current through the load resis-

tor RL. For the interesting frequency range around the

center frequency of oscillation ~.= 292 MHz for the oscil-

lator shown above, we can neglect the coupling capacitor

CA. Therefore the power spectrum is directly proportional

to the correlation spectrum of the state variable Ul, the

collector–emitter voltage at the transistor. Thus the single

sideband phase noise to carrier ratio L ( jm) is given by

L(fm) = FfO)(fm) (135)

where ~w is the deviation from the center frequency ~o.

This single sideband phase noise to carrier ratio for the

Colpitts oscillator shown above is shown in Fig. 7. As one

can see the spectrum consists of a Lorenzian line with the

3 dB bandwidth A~3~~ = 0.4.10-2 Hz. The main portion

of this line width is caused by the conversion of amplitude

fluctuations into phase fluctuations. The additional terms

produced by the function G( I~1) are completely suppressed

by this Lorenzian line. Thus in the vicinity of the carrier

the spectrum is completely defined by the 3 dB bandwidth.

Therefore it is interesting to investigate the influence of the

various noise sources on the 3 dB bandwidth. In Table I

the contribution of every noise source is shown. The great-

est contribution, about 90 percent, is made by the shot

noise of the collector–emitter current i CE. Also the shot

noise of the reverse basis–collector current iBc makes a

contribution of about 6.2 percent to the bandwidth. This is

caused by the lack of a countercoupling resistor in the
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TABLE I
CONTRIBUTION OF THE VARIOUS NOISE SOURCES TO THE 3 dB

BANDWIDTH AA ~B

noise source
cant ribntlon relative
to Af3dB contribution

I I

‘nrl

‘nr’2

‘nrl

Ine

mb

inc

0.15.10–7HZ

0.43.104HZ

0.59.104Hz

0.36. 10–2 Hz

0.0910-3Hz

0.25 .10-3 Hz

3.6.10+

10–2 %

1.5%

90%

2.2%

6.2%

Af3 ~B= O.4X1O”’ Hz.

emitter terminal, which allows the transistor to operate for

a short time in the reverse direction. The thermal noise of

the resistors makes a contribution of only about 1.5 per-

cent to the bandwidth. From this example we can see that

the method described above is appropriate for simulating

the noise behavior of oscillator circuits, as is possible for

linear networks today.

VII. CONCLUSIONS

The main result of this paper is the derivation of the

complete correlation spectrum of an oscillator in the low-

noise case. The methods used analytically for the deriva-

tion are well suited for numerical calculation of noise

spectra of technically relevant oscillators, as is shown by

the numerical example above. Thus with the derived proce-

dure the complete power spectrum of an oscillator can be

calculated from the lumped circuit model with the inherent

noise sources of the active and passive components. The

main effort of computation, the determination of the limit

cycle and the mapping matrices, can be reused for further

calculations with modified intensities of the noise sources.

The technically important case of the influence of l/~”

noise sources on the correlation spectrum of an oscillator

has not been covered in a tractable way so far. This is

because the production of l/~” noise out of white sources

as is discussed in Section II for colored noise sources

would lead to a linear system of infinite dimension [28],

[29]. But l/~” noise sources also can be simulated within

this framework with almost no additional computational

effort, as will be shown in a subsequent paper.

APPENDIX

In this appendix we will prove the representation of the

fundamental matrix V used before. We assume a nonlin-

ear dynamical system

i= F(x)j ieRN (Al)

with a stable limit cycle ~“( t) of period T 0. Therefore the

time evolution of small deviations Ai from the limit cycle

is given by the time periodic linear differential equation

A+(t) =DF(XO(t))AX(t) (A2)

with DF (7°) according to (14).

From the theory of linear differential ,equaticms with

periodic coefficients it is welI known that there exists a set

of N linear independent solutions ~(t) to (A2) [30] with

~(l) =e’’ti,(t) (A3)

where qi are the Floquet exponents and fil ( t) are periodic

vectors with period To. The adjoint equation to (A2),

A~(t)’= -AY(i)~DF(iO(t)) (A4)

has the set of solutions ~~ where

F1(t)~=e-’’ZT(t) (A5)

with the same Floquet exponents q, as above and the

~~( t) and F,(t) fulfill the orthogonality relations

~T(t)i,(t)=8,,J (A6)

if the initial conditions Z(O) are chosen according to (A6).

Here we will not consider the case of a non-semisimple

fundamental matrix *(To, O), which leads to multiple

Floquet exponents, since semisimplicity is a generic prop-

N x R N [31]. That means thaterty of the matrices in R

almost all matrices are diagonalizable.

From (A3) and (A6) one can easily see that the funda-

mental matrix E( t,s) of (A2) is given by

E(t, s) = ~ e’(’-s)i7i(t)~T(s). (A7)
~=1

Thus E(t,s)maps the initial value AZ(S) onto the solution

A~(t) of (A2):

A~(t)=E(t,.s) A,i’(s). (A8)

. As c?n be seen from (Al) and (A2) by differentiation of

i?”(t), Z’”(t)can be taken as @l(f) with corresponding

Floquet exponent ql = O. Therefore from (A6) we can

claim that the set 7..(t) to i7N(t) completely spans the

orthogonal complement X(t) to the tangent space at the

limit cycle Z“(t).

Equation (20) describes the time evolution of the normal

deviation A;A (t),which is given by application of the

projection operator P(t) according to (17):

A74(t)=P(t)AY(t). (A9)

Therefore the fundamental matrix SP(t, s) of (20) is given

by

T(t,.s)=qt)s(t,. s)

= f en(’-s)ilz(t)~T(,s) (A1O)
[=2

with ill(t)= P(f)i7,(t)and P(t)til(t) = O. By differentia-

tion of *(t,s) with respect to t one can show that the

relation

i?(t,s)=v(t)v(t, s) (All)

is fulfilled. Also the orthogonality relations between the
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vectors iii and <. are saved: [18]

[19]

~(t)%j(t) = [P(t) ~(t)] T~. (t) =~(t)Tij(t) =dj, j

(A12)

[20]

for2<i, j<N. [21]
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