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Determination of the Correlation Spectrum
of Oscillators with Low Noise

FRANZ X. KAERTNER

Abstract —A general expression for the correlation spectrum of an
oscillator, described by a set of nonlinear ordinary differential equations
with intrinsic noise sources, is derived by a first-order perturbation theory.
The analytical derivations are well suited to the numerical determination of
the correlation spectrum by Poincaré mapping methods. The theory is
applied to a lumped circuit model of a Colpitts oscillator. The noise
behavior of complex oscillator circuits used in microwave engineering may
be simulated by the derived method.

1. INTRODUCTION

HE THEORIES presented in most papers on noise in

oscillators allow a good qualitative understanding of
the noise behavior of oscillators [1], [10] and give rules for
the design of low-noise oscillators. But the procedures used
for this approach are not suitable for calculating the noise
spectra of oscillators on the basis of the large-signal mod-
els of active components with the various intrinsic noise
sources of the active and passive components.

In this paper, a general time-domain analysis of noise in
oscillators is presented. In Section II a precise definition of
the problem treated here is given. Assumptions about the
noise sources, which can be simulated with the presented
formalism, are also outlined. In Section III the inherent
stochastic processes of an oscillator are derived by a first-
order perturbation theory. A general expression for the
correlation matrix of an oscillator is derived in Section IV.
In Section V we present numerical techniques for deter-
mining the complete correlation matrix or correlation spec-
trum of an oscillator signal. Finally in Section VI we will
apply the formalism presented here to a Colpitts oscillator
where the transistor is modeled by an Ebers—Moll equiva-
lent circuit.

JI. OUTLINE OF THE PROBLEM

A dynamical system is described by a set of N first-order
nonlinear differential equations:

X=F(%1,§), (1)
The components x; of the vector X uniquely determine the
state of the system. In electrical systems, these state vari-
ables are the linear independent voltages at the capacitors

and the currents through the inductors. These variables
determine the energy stored in the network [11]. The vector

TeRY; £eRX.
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£ describes the stochastic noise sources, which are always
present in dissipative systems [12]. If the system equation
(1) descirbes an oscillator without external synchronisa-
tion, the right-hand side of (1) does not explicitly depend
on time; ie., the system without the noise sources is
autonomous. In electrical oscillators the noise sources are
very small in comparison with the state variables. Thus it
is sufficient to take into account the noise sources up to
first order. Thus we obtain

X¥=F(x0)+G(3)E
where G(X) €RY XxRX with elements

dF,(%,E
G, (%) =—g’§_l :
R

(2)

3)

Thus G(X) describes the influence of the noise sources on
the state variables and also the modulation of the intensity
of the noise sources by the state variables, as in the case of
shot noise, where the intensity of noise is proportional to
the current through the components. This will be discussed
in detail in the example given in Section VI. Furthermore
we shall assume that the noise sources given by £ are white
and Gaussian.

Thus the statistics of the noise sources are completely
described by [13]

. (2)€,(1)y=T,8(:1~1)
(£(1))y=0
p(E) =(@n-af) det(T)

Eir-1E
PN T T A7

(4)
(5)

)—1/2

(6)

T is the correlation matrix of the K-dimensional stationary
noise process, and Af is the bandwidth with which the
probability distribution was measured. This restriction to
white noise sources does not preclude simulating the influ-
ence of colored noise because we can extend our original
system given by (2) by a linear system L, which produces
the colored noise out of the white sources:

$=F(%)+G(R)y

y=Ly+§.

(7)
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“ xn

AR (£+8(c))
R(t+3(t))
(1)
%(t)

N

Separation of the perturbed motion into normal and tangential
deviations.

—

Fig. 1.

If we denote the vector (¥, ¥) as the new state vector, we
have a problem of the same kind as stated above.

Since the differential equation (1) describes an oscilla-
tor, the solution of the unperturbed system, setting £(¢) =
0, is the stable limit cycle X°(¢) with period T°. The noise
sources produce deviations from this stable limit cycle,
broadening the oscillator’s spectrum. In the following the
complete spectrum of an oscillator is derived by interpret-
ing the differential equation (2) as a stochastic Ito differen-
tial equation [14], [15]:

dX=F(X) dt + G(X)dW(t)  (8)
(dW(t)) =0 9)
(AW (1) dW(1")y =T, 8, ,dt. (10)

With these assumptions we will derive the stochastic pro-
cesses for the amplitude and phase of an oscillator. These
processes will be Markov processes because of the assumed
whiteness of the noise sources.

I11.

The noise sources £(¢) force the oscillator signal X(¢) to
deviate from the limit cycle ¥°(¢), which is a closed orbit
in the N-dimensional phase space of the possible states X
of the system (see Fig. 1). Since the limit cycle is stable, the
deviations perpendicular to the limit cycle may remain
small. The deviations in the direction of the unperturbed
orbit, however, may become unbounded in time, even
though x(¢) and x(¢) have the same initial values. This is
possible because the differential equation (2) is au-
tonomous without the noise sources. To be able to use
perturbation methods we separate the solution X(¢) as
shown in Fig. 1:

(1) =7t +9())+ A%, (e +9(2)). (1)

The stochastic variable ¥(¢) can be separated in the part
AX | (¢4 9(1)), which is an element of the orthogonal
complement space 4 (f) to the tangent space at the limit
cycle at point X°(¢ + #(¢)) and the time-shifted solution
7t + 8(t)) of the unperturbed equation [16]. The
stochastic timeshift $#(z) léads to a random phase modula-
tion in the unperturbed solution, as we will see later on.
Therefore #(¢) determines the phase process of the oscilla-

DERIVATION OF AMPLITUDE AND PHASE PROCESS

91

tor and we will call AX, the amplitude process. By this
subdivision of the signal the relation

A% || < JIx°)

(12)
is valid for every time . With the statement given by (11)
we can derive two separate differential equations for am-
plitude and phase processes. Inserting (11) into (2) and
neglecting terms of higher order in AX,, ¢ and the noise
sources §, we obtain

()9 + A% (y)
=DF(2°(»)) A%, (»)+ G(Z°(»))E (1(»)) (13)

with
DF(xO(y)>i1== a (14)
Y lz=20)
and
y=t+9(1). (15)

The bar denotes the derivation with respect to the argu-
ment. We defione the tangent vector 7(t) at the unper-
turbed orbit X (¢) by

>0
" x (1)
n(t) = 20 (16)
1= ()1l
and the projection operator P(t) by
P(t) =1-7(1)-7(1)". (17)

P(t) projects onto the hyperplane orthogonal to the orbit
)?O(t). From

7()T-A%, (1) =0 (18)
we obtain the identity
#() AR, (1) =—7(1)TAZ, (1). (19)

By application of the projector P(y) to (13) and with (19)
we obtain

di;Amy)=V(y>Aa(y>+Q<y)§<z(y» (20)

for the amplitude process, with the abbreviations
V(y) = P(y)DF(2(y)) - #(»)@(y)" (21a)
2(y)=P(y)G(y). (21b)

From the scalar product of #(y) with (13), we obtain
the equation describing the phase process:

$(1) =B(»)AX, (y)+a(»)E (1(»))  (22)
with
B(y)=ﬁ(y) DF(-:/(y))Jrﬁ(y) ’ (239)
1X" ()l
a(y) = n(y) G(Y). (23b)

12" ()
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From (20) it can be seen that the amplitude process is
described by a linear inhomogeneous differential equation
with periodic coefficients. Therefore we can write the
amplitude process

27, ()= [ ¥ () s (24)

where ¥(y,s) is the fundamental matrix of the homoge-
neous differential equation [17]. The integral is taken from
infinity to achieve independence of initial conditions. Since
the limit cycle is stable, N —1 Floquet exponents of the
fundamental matrix must have negative real parts. One of
the Floquet exponents is — oo because of the projection
operator involved in equation (20) (see the Appendix). The
phase process described by (22) can be integrated directly.
For this we substitute the differential dr for dy according
to (15):

dy=(1+8(¢))at (25)

and obtain

3(0) = ["7[B() AL (1) + @(0)E ()] @
(26)

For the determination of &(¢) up to first order in the
noise sources, we can neglect ¢(#) at the upper integration
range. The physical significance of the derived stochastic
processes for amplitude and phase, described by (24) and
(26), is well known. The amplitude process is a multivari-
ate Ornstein—Uhlenbeck process with periodic coefficients
[15], [18]. And the phase process is a diffusion process [15],
[19], which is driven partly by the amplitude deviations via
the amplitude phase conversion matrix B and partly by the
noise sources.

IV. Tue CORRELATION SPECTRUM OF AN
OSCILLATOR SIGNAL

The correlation matrix of a stationary stochastic process
X(?) is defined as follows [20]:

1 7
cxx(T)=Tlgnw—T—fo (F(t+0)F()Ya.  (27)

If we put (11) into (27) we obtain for the correlation
matrix

Cor(1) = Cuopo(7) + Crop (1)

+CAxx°(T)+CAxAx(T)
(28)
1 ,r
Cown(r) = lim = [+ 7+(1+7))
XN+ 9(2))y dt (29)

, ) )
Copl7)= Tlgnoo ?fOT@?O(t +7+8(t+ 7)) Axt

(14 9(2)))at (30)

1
Cpro(7) = lim. ?I(;T<Afl(t+ T8+ )

X0 (e +9(2))) at (31)

1
CAxAx(”) = Th._{noo —T._/(.)T<A)?_L
(t+r+0(e+1))AXT (2 +9(2))yde. (32)

Equation (29) describes the phase noise, (30) and (31)
describe the correlations between phase and amplitude
noise, and (32) describes the amplitude noise. These parts
of the correlation matrix will be subsequently calculated.
Therefore we expand the limit cycle )_c’o(t) with period T'°
into a Fourier series:

2m

+ o0 .
fo(t) = Z Anejnth, F

n=-—00

(33)

with w, =

A. Determination of the Phase Noise

According to (29) the phase noise is given by
* % sl —, 1
Y 4,4 Lm —

- R
e/ (n—m)wgt dr
Toow T 0

Coop(r) =
m,n=—oo
Xejnwo'r<ej(nw00(1+r)—mw019(t))>_ (34)

The ensemble average in (34) does not depend on time ¢,
as we will see later on; therefore we can separate the time

average and the ensemble average. The integral in (34) is a
Kronecker symbol in the limit:

li 1 T J(n—m)w, td 3
m — | e/t TR df = .
Tow T 0 . m

(35)
Thus we obtain

+ o0 N
Cop(r)= X 4,4 (n,7)

n=-—c0

(36)

where

qb(n, T) = <ejn(<p(t+f)~¢(t))>

(37)

and

(1) = wo?(2). (38)
This definition of the phase helps us to avoid the often-used
instantaneous frequency discussed in [21], [22], which has
no physical significance.
The function ¢(#n, 7) is the characteristic function of the
stochastic variable Ag (¢, 7) describing the phase difference
between ¢ + v and r [23], [24]:

¢(n,7) = (e (39)
b (t,7) =1+ 1)—9(1). (40)
From a knowledge of the characteristic function we can
calculate the correlation matrix C,o,o(7) according to (36).

The corrlation spectrum due to phase noise can be ob-
tained by Fourier transformation of the correlation matrix:

Cos(f)= Y AAE(f-nfy) (41

n=—oo
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with
F(f)=F{¢(n,1)}. (42)

Thus the Fourier transform of the characteristic func-
tion uniquely determines the spectral shape of the nth
harmonic. For the calculation of the characteristic function
we need the probability distribution of phase ¢(t). Since
we have only assumed white Gaussian noise sources, the
phase has to be a Gaussian distributed Markov process
because of the linear dependence on the noise sources
according to (20) and (22). Taking the case of non-Gaus-
sian noise sources, the probability distribution of the phase
becomes Gaussian in the course of time due to the central
limit theorem. Therefore the assumption of a Gaussian
distributed phase may be taken as an approximation in the
case of non-Gaussian noise sources as well. Thus we can
make the following statement for the conditional probabil-
ity of the phase ¢:

P (@, t/90,t0) = (270 (@, t — 15)) "/

(*P“Po)2
-exp{—— ——_——20(<p0,t—t0)} (43a)
with
o (@0, 1 —19) = (9 (1)~ #(10))") (43b)
9o = (%) (43c)

The variance of the phase depends only on the time
difference and the initial value of the Markov process on
the limit cycle. Therefore the variance is periodic in ¢,
with a period of 27 because of the periodicity of the limit
cycle. The joint probability distribution is given by

(@, 1590, 1) = p(@, /9y, 1) P (Po, 1o)-
With (39) and (44) we obtain

+ o0

¢'(n97) = ‘_[f {exp(jn(q)t+r_q)t))

(9. /0)p(9)} do,y, do,.  (45)

Inserting eq. (43a) into (45) and replacing the phase differ-
ence ¢, . — ¢, with Ap, we can do the integration about
A and obtain

o(n.7) = [ p(a)exp = olaun) | ds.. (a0

Since the variance is periodic in ¢,, we make the following
Fourier expansion:

(44)

+ 00
o(p,m)= XL o,(r)e™ (47a)
m=—oo
with
1 27
- —yme
0,,(7) 277/0 o(@,T)e ™ dp. (47b)

As can be seen from (26), only o,(7) can increase with 7,
whereas o,,(r) is always of the order of I' for m=+0.
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Therefore we obtain
2

¢(n,7>=exp(—";oo(f)

(1+0(n*T?)) (48)
since ¢, is equally distributed on the interval 0 to 2+. Thus

the characteristic function is fully determined up to first
order by the averaged variance o,(7):

n2
o(n,7) =exp| - ().
The averaged variance can easily be calculated with (24),

(26), and (43b) by the Ito calculus. Thus we obtain in first
order of T

o(t,) = a3 [T Ta(n) D2 [ B(»)
[0 (RGB()

(49)

+0(2)Ta(2)") dzdy]. (50)

We have replaced ¢ with ¢ and have introduced the
amplitude fluctuation matrix

R(z)=/_Z°°\I'(z,s)Q(s)I‘Q(s)T\I'(z,s)Tds. (51)

The quantity o(z,7) is periodic in the variable ¢ with
period TP, To obtain the averaged variance o,(7) we have
to average over one period in ¢ according to (47b). There-

fore we obtain
oo(7) =0V (7)+ of?(7) (522)

with

(52b)

1 Y r+T
o(1) =75 [ 263 BO) [#(r.2)

X {R(z)B(z)T + Q(z)Fa(z)T} dzdydt. (52c)

Since the integrand in (52b) is also periodic we obtain, for
the first part of the phase fluctuations,

o5 (7) = dyl7| (53a)

where

1 70
dy= w%ﬁfo a(y)Ta(y) dy. (53b)
To gain greater insight into the second part of the phase
fluctuations we use the presentation of the fundamental
matrix ¥(y, z) given in the Appendix:
N

V(y,z)= 3 "™ 9%, (y)57(2)
1=2

(A10)

where 7, is the Floquet exponent belonging to #,(¢), which
is the periodic part of one of the fundamental solutions of
the linear and time periodic differential equation (20), and
v,(¢) is the corresponding periodic part of the fundamental
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solution of the adjoint equation to (20) (see the Appendix).
Thus we can calculate the elements Rf‘j(z) of the matrix
R(z) on the basis of the #,(z):

R(z)= ¥ X R(2)#(2)a/(2)

1=2j=2

(54)

by inserting the representation of the fundamental matrix
given in (A10) into (51). From this we obtain

Rl(z)= [ e 57(5)Q(5)TQ(5) "5 (s) .
(55)

Dividing the interval of integration in intervals of length
T? and using the periodicity of the second part of the
integrand, we obtain

1 o .
N S — (n,+,XT° - 05T,

RY(2) 1—e<m+m>T°fo e 5T(t+2)Q(t +z)
XTQ™(t+2)0,(t+z)dt. (56)

Thus we can calculate these matrix elements by integrating
only over a single period. Inserting (A10) and (54) into
(52¢) and using the orthogonality relations (Al12) in the
Appendix, we obtain

N
0@(t,1) =203 ¥ [7C(y) [[en0ID,(2) drdy
k=2"1 t

(57)
with the periodic scalar functions

Ck(}’) =B(»)u,(»)
D(z)= X [RE(2)C(2)] +5](2)@(2)Ta(z)".

J=2

(58a)

(58b)

From (57) one can see that every fundamental solution
k > 2 of the linear and time periodic differential equation
(20) makes a contribution

4T Yy
6@(t,7) =2w} / C.(») f, e™=ID, (z) dzdy (59)

to the second part of the phase fluctuations:
N

c@(1,r) = ¥ o@(t,7).

k=2

(60)

Thus we obtain for the contribution of the kth solution to
the averaged phase fluctuations

1 po
0,(T) =75 /0 o (t,7)dt. (61)

The integrations in (59) and (61) can be carried out by
substituting the coresponding Fourier series for the peri-
odic functions C,(¢) and D, (z)

+ o0

Cl)= X ék,nejnth (622)
n=—c0
+ o0 "

D)= X By em (62b)

n=—w

into (59). With relation (35) we obtain

Uok(7)= Z Jfo ak,nSk,n(T)

k=2n=-00

(63)

with coefficients
(64)

ahn=2waimbh—n
and structural functions
Sk,n("') =- (7lk + j”‘*’o)_z‘ (nk + j”wo)wlT
+(m, + jnwo)_ze("k+j”‘°°)". (65)

Now we can collect all terms and obtain the following
relationship for the time dependence of the averaged phase
fluctuations o,(7):

60(7)=A+Dq,|'r|+ G(]7))- (66a)

Where from (52a) to (65) for the damping factor 4 we
obtain

+ o0 N
A=— ) X ak,n("k"’J.”""o)_2 (66b)
n=-—-00 k=2
for the diffusion constant of the phase D,,
N
D,= ). d, (66¢)
k=1

with d; according to (53b) and d, for k >1 by (63) and
(65):

+ o0
de== X ap,(m+jne) " (66d)
n=-o0
Finally for the function G(7) we obtain
N
G(1)= X 87) (66¢)
k=2
with
+ o0
ge(r)= L ay (m+ jnwg) Pemmeor. (661)
n=-o

With (66a) we can calculate the spectral shape of the nth
harmonic E,(f) produced by phase noise according to
(42), (49), and (66a):

E(1) =ff{exp[~ %(A+D¢ITI+G(ITI))]}- (67)

And we obtain with the folding theorem of the Fourier
transformation

E(f)=e "4/ (o= "D/l Y x5 e~"GUD/2) - (68)

The function G(}r]) vanishes for 7 — oo and is always of
the order of T for |r|> 0, which means G(|7}) <1 for all
7. Therefore we can expand the exponential in G(|7]) up to
first order. If we additionally assume that n?D, /2 <
—Re{n,}, 2<k < N, we obtain

F(f)=e A2 F (e P2} — F (026 (j7)) /2}].
(69)
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These assumptions are well fulfilled in electrical oscillators
due to the weakness of the noise sources. The Fourier
transforms in (69) can easily be carried out since we have
only to transform exponentials which lead to Lorenzian
lines. Therefore we obtain

E(f)=E2(f)+EP(f)
(70a)

0 — ,—nt4/2 nZDq,
FO(f)=e / { (n2D(p/2)2+(2"7'f)2
_m
- 2+ (2af )’
+n?) Re{a,.,on,.‘z}

1

+ ”22‘1;,0"11_2

1

<

-, -
) 2 \2 + 72 Y
02+ Qaf+97) 9P+ Q2af—n))

+ n22 Im{ai’oni_z}

i

n, +2af
.,71{2 + (2-77f + 11,’.’)2

n —2af
+ 12 77\2
0+ (2nf — 7))

(70b)

ER(f) =e‘"2"/2{n22 >

i, m=1

{Re{ai,m(nl + jmwo)_z}

-1, -1,
+
['q%+(277f+mw0)2 11,2+(277f—mw0)2]

mwy +27f

—Im { a, .(n,+ jmew) _2} l
N mw, —2af }}
le2 +(Q2nf - mw0)2

+n22 E,

i, m=—o0

7+ (2af + mw0)2

{Re { a, ,(n,+ jmwo)_z}

-,
X 2
2+ Q2af + 97 + may)

- n;
+
>+ Q2af =) - mwo)Z]
_Im{ai,m("?i+ jm‘*’o)az}
n’ + mwy+2af
;2 + Qaf +ul + ma)’

)+ mey,—27f

* 0%+ (2mf — 0y — ma,)’ }}}

(70¢)
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The summation over { with indices » and ¢, respectively,
denotes summation over those i’s with real Floquet expo-
nents 5, and a pair of conjugate complex Floquet expo-
nents 1, =1, % ju,’. Also we have used the relations a*,
=a,.1 ,» Where n, and #u,,, are a pair of conjugate
complex Floquet exponents. As we see from (70b) the
main part of the spectrum is a Lorenzian line with 3 dB
half-bandwidth Af;q3=n?D,/4m. The other parts of
EO(f) are also centered on f =0, where those parts with
—Re{1,} < w, dominate. Therefore this function is
strongly peaked at f=0. FY(f) consists of those parts
centered on f = mf,, m # 0. And in this function the terms
with —Re{n,} > w, cause a broad spectrum. Thus F,( f)
only contribute to the noise floor of an oscillator. This
noise floor is produced by the fast relaxing normal modes.
From (70a)-(70c) one can see that the phase noise spec-
trum is fully determined by the Floquet exponents and the
coefficients a, ,,, which determine the coupling of the
noise sources to the kth mode of the time periodic system
and the conversion into phase fluctuations.

B. Determination of the Correlation Between Amplitude
and Phase

From (30) and (31) the following identities can be
derived:

Cuo(7) = Cpop (= 7)7 (71a)
Caro(f) = Con (). (71b)

Thus we can restrict ourselves to calculate C,o, (7). From
(30) and (33) we obtain

+ o0 IR 1 T
Conx(T) = Z A, el lim _j(; <el"‘wo(t+0(t))

N
m=—o00 T—o0

- eImeoM DI AZT (1 4+ 9(2))Ydt. (72)

First we average over all realizations of the processes with
the same ¢(¢) and later we take the average about 4(¢).
Therefore we calculate the average

K= (e/meo@En 3D AZT (14 8(2)))py-cons: (73)

We introduce the characteristic time constants 7, and T,
which are defined as follows:

oo() = (27’)2 (74a)
7.=1/Re{—n} (74b)
where 7 is the largest negative Floquet exponent of the
fundamental matrix ¥. Thus 7, is the correlation time
between the amplitude fluctuations, and 7, is the time
after which the phase fluctuations cover the whole limit
cycle. From (66a), we obtain for the time ;= (277)2,/D¢
=a/Af;qs (n=1). If the intensities of the noise sources
are small, the relation 7, << 7 holds. In electrical oscilla-
tors this condition is excellently fulfilled. Therefore we can
separate K7 as follows:

ET — <e_]mw0(1?(t+‘r)'0(t+'rc))

(e/meorOTIOALT (£ +3(4))) gy =consi. (73)
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since the amplitude is not correlated with the increase of
phase at times later than 7,. On the other hand o,(7,) < 1.
Therefore we can expand the exponential function in the
inner average in (75) and we can also neglect 7, in the first
exponential function for 7> 7. In this way we obtain,
with (24), (26), and (37), up to first order in T,

K(r>1)" = jmeg(m,r)H(z.7)"  (76)
with
[ BTG, R 8, >0
H(z,7)" f “UB(R(Y)
+a(y)TQ(y)" }¥(z,y) dy, 7<0

(717)

and z=1¢+9(z). H(z, ) is periodic with period T° with
respect to the variable z. Thus we obtain for the correla-
tion matrix C,o,,, according to (72), (73), and (76),

+ o0
Coa(r)= X jmag(m,7)A,H_, (1) e/ (78)
where we have set
. 1
H, = Tof H(z,7)e o gy
This result is also valid for 7 <7, as one can easily see
from (75)- (78) since ¢(m, 1) =1 for 7 < 7,. The multipli-
cation of H, (7)) with ¢(m, 1) is necessary to avoid singu-
larities in the spectrum, because H. ..(7) does not vanish for
7 —>00. With the relation (A10) we obtain from (77),

N + T
Py f Cul»)FI(z)en0= gy

(79)

H(z,r)T={* (80)

N
LT n»a)ene g
k=2"z
with C.(y), Di(y) according to (58a) and (58b), and
e (z) = ZR ) (2)i](z).

With the Fourier expansions for C,(y), D,(y) according
to (62a) and (62b), and

(81)

A= T Aem ()
i (z) = Z i, 7' (82b)
I=—oo

we obtain for H, (T)T according to (79)—(82b)

Y Y arn(eorr1), pa
A (r)T={ % 21=—oo

Z Z G (emeor—1) <0
(83)

where

anl Ck lrkn 1(77k+]lwo)

P

Aion, 1= Dk luk n— 1( J["Jo)

By (83) and (66a), we obtain up to first order in T’

+ o0
H. ()= % Z
I=—00 k=2
.(e(miﬂwow_1)(e—m2<A+Dq,|r|)/2) (85)
where the plus sign holds for 7> 0 and the minus sign for
7 < (. By Fourier transformation we obtain, with (78),

(84)

ST+
qk m, !

¢(m, )

+ o0 N
Con(f)=e 42 3 jmey 2 A,
m=—oc0 k=2
(SE () +5T-.(H)] (86)
with
§lzim(f) = Z qk m,l
I=—0o0
1
. —n§c+m2D¢/2+j(277f—n’k’—(m+1)w0)
1
D,/ 2+ j2af — mw,)
§kT,:m(f) “Z CIk —m,l
1
nk+m‘D /2= jQaf +ny —(m+1)w,)
m2D¢/2— j(277f— mwy) J (®7)

With (71b) and (86) the correlation spectrum due to phase
amplitude correlations is known.
C. Determination of Amplitude Noise

The last term in (28) describes the amplitude noise.
From (32) follows

Cuenn(—7) =CAXAX(T)T (88a)
éAxAx(f) = ‘%{g(T)CAxAx(T)}
+7{8(1)Cuan(7)}" (88D)
with
o ={o 728 (89

Thus we can restrict ourselves to the case 7> 0. With (32),
(24), and (51) we obtain

1
Cira(7) = lim ?/()T(\If(z trtd(r+7),

t+())R(e+9(2)))de. (89)
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Now we replace ¢+ #(¢) with z and the differential df
with dz. Since the fundamental matrix is only nonzero for
T <7, we can neglect the time difference #(¢ + 7)— ¥(¢)
in the argument of ¥. Thus we obtain

1 0
Corax(m) =75 [[ W2+ 7, 2)R() &z (90)

since the integrand is periodic in z with period T°. With
(A10), (54), and (81) we obtain

1 0 X
Canan() = 75 [ X e (2 + )7 (2) dz (91)
k=2

By the Fourier expansions according to (82a) and (82b) we
obtain

N + o0
Gua(T)= X X @ i e (92)
k=2 m=—0o0
The correlation spectrum of the amplitude noise can be
calculated by (88b) and the expression for the correlation
matrix (92) for time 7> 0

éAxAx(f)
= Uy, Tk .
K memw CTET = (2] — my — mey)

1
. 93
== j2uf + 0} — mw,) ®3)

where we have used the relations #},=1;,,_, and
P = T%+1, m» Now the complete spectrum of an oscillator
is formally derived and we can tackle the problem of the
numerical determination of the correlation spectra given
above.

— T
+ 7%, mbie—m

V. NUMERICAL PROCEDURE FOR THE
DETERMINATION OF THE CORRELATION SPECTRUM

In this section a numerical procedure for the determina-
tion of the correlation matrices calculated in Section IV is
given. Therefore we replace the continuous stochastic pro-
cesses derived in Section III by time discrete processes.
The discretization in time is achieved by Poincaré mapping
[25], as shown in Fig. 2. We assume that the limit cycle
)‘c’o(t) with period T is known. The limit cycle is a curve
in R¥, which is parameterized by time from 0 <t <T°. We
choose M equidistant points J?,O on the limit cycle, as
follows:

TO
X=%%t) with £,=i-At,1<i<M, At= - 9
By these points the hyperplanes .4, with 3?,0 e, and
normal vectors

. i 0 0

A,=—5, WhereX, = f(x, ) (95)
I1%; 1

are defined. The flux of the unperturbed differential equa-

tion (2) describes a nonlinear mapping of a deviation

Ax?, at point X,_; onto a deviation AX, at point X

97

Fig. 3. Mapping of deviation by the flux of the unperturbed system.

during a time interval Az. That is,
A%, = B,(A%,,). (96)

See Fig. 3. In particular the hyperplane 4;_; is mapped.
onto the curved area J, (see Fig. 2). For small deviations
AX,_, the nonlinear map B, can be linearized. Thus we

obtain the matrix B, with elements
d (A)?t) k
B) = (©7)
Bu= 5087,

and with (96)
A% = BAR,_,. (98)

Now we separate the map, which describes the evolution of
the normal deviation from the unperturbed orbit. There-
fore we introduce the projection operator P, by
P =(1-77])
and obtain for the normal deviation
AX,, =A4,0X

(99)

(100a)
where

A=PB,. (100b)
By multiplication of the mapping matrices A, over one
pertod,

M
A= l]:[lA, (101)
we obtain the matrix 4, wilich describes the time evolu-
tion of a normal deviation AX, after one revolution
around the limit cycle (see Fig. 4).
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Fig. 4. Mapping of a deviation after one revolution around the limit
cycle X° by the Poincaré map 4,,.

This linearized Poincaré map 4, is equivalent to the
fundamental matrix

¥(T°,0)=4, (102)

which also describes the time evolution of the normal
deviation over one period. With (A10) of the Appendix we
obtain

(103)

N
0 —'
A,= ) ", (0)5](0)
1=2
where we have used #,(T°) = #,(0) due to the periodicity
of the u,.

From this relation and with (A12) we can see that #,(0)
and 7,(0) are the right- and left-sided eigenvectors of the
matrix 4

Agl’_[i (0) = Atizi (O)

57 (0) 4, =A;07(0)

(104a)
(104b)

with eigenvalue A, = 7",
The solutions #,(¢) and 7;(¢) can be determined subse-
quently at the points ¢t = jAz by the recurrence relations

iZ,(jAt) = e "84 i, ((j—1) At) (105a)
5T(jAr) = e mAGT((j+1)Ar)4,,,  (105b)

since
A, =Y(iAt,(i—1)Ar). (106)

The vectors 7,'(0) have to be normalized at the beginning
of the iteration to fulfill relation (A12). The matrices B,
can be obtained by numerical differentiation techniques
according to (23a). Therefore with this construction of the
basis i, and the corresponding basis " of the dual space,
we can calculate the spectra derived above. The integra-
tions which have to be carried out above can be done by
interpolation of the integrand with cubic splines.

VI. NUMERICAL ExaMPLE: COLPITTS OSCILLATOR

To convey an idea of the applicability of the theory
described above we will calculate the phase noise spectrum
of the Colpitts oscillator shown in Fig. 5 in the neighbor-

-Q Uo = 12V

Fig. 5. Analyzed Colpitts oscillator circuit. The values of the compo-
nents are R; =350 ©, R, =110 kQ, R, =500 ©, L, =10 pH, L, =
30 nH, C, =10 pF, C, =940 pF, C;=2.7 oF, ¢, =1.5 nF, T=BFR
35A.

hood of the oscillation frequency f,, which is given by the
function F{O(f — £,). The transistor BFR 35 A is modeled
by a Ebers—-Moll equivalent circuit [26], shown in Fig. 6.
Transistor parameters are taken from the paper by
Schwaderer [27]. From the lumped circuit models shown in
Figs. 5 and 6, we can derive the equations of motion for
the state vector X = (i, i, Uy, Uy, s, ;) ERS:
d 1

Zl';il: — L_I(Rli1+ u, — u0)+ Gl()?)g (107)
d 1 o
Elz=f2(u1+”2)+G2‘(X)$ (108)

=gt w6 E o9
d 1 1 -
E”zza(ib—iz”R_z(“o'F”z"'“s) +Gy(X)¢€
(110)
d 1 1 N
;l;u3=a(ib—g(uo+u2+u3) +G5(X)¢ (111)
d 1 RN
E”4=7{L—q(u1_“4)+Ge(x)§ (112)
where the currents in the transistor are given by
ic=lcg—ipc (113)
ip=lpgr+ipe (114)

s

[eXP(“BE/UT)_CXP(“BC/UT)] (115)

e 00/ 0
IS
ipp = B—[eXP(uBE/“T)_l] (116)
N
IS
Igc= B_I[CXP("BC/uT)—l] (117)
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NE

¢
? i
[
8c
. Ne Yge
i -4—0 B
CE
i b
NB Yge
| TpE
£

Fig. 6. Ebers-Moll equivalent circuit for the transistor BFR 35 A.
I,=127-10"16A, B; =55, By =140, U, =15V, Up =43 V.

with
Upp=— Uy — U (118)
Upc= — Uy~ Uy~ Uy (119)
U, U,
Loy Yoe U (120)
Qo Uy U,

The thermal noise sources of the resistors and the shot
noise sources of the pn junctions in the transistor produce
the stochastic forces G,(¥X)£, which are given by

- 1
G(X)é=~ Z—uNRL (121)
1
G,(R)E=0 (122)
ey 1 1 1
Gy(¥)€= CIRLuNRL alNE + C, ive (123)
-\ = 1 . 1 .
Gy(X)¢ G,R, Uygz a’NB+ CZINC (124)
b d 1 1 - 1 .
Gs(X)é= C3R2uNR2+ C ’NB+ET’NC (125)
o 1
Gs(¥)é= _E:RT;”NRL- (126)
For the thermal and shot noise sources we obtain
Ung =y2kTR §; (127)
Uyry =V2kTR, £, (128)
Uyrr =V2kTR &3 (129)
iNe= VqliCE|£4 (130)
ing =V4qligel€s (131)
inc =yqligclé6- (132)
From (126) to (132) we obtain the matrix elements
3(GE)
(X)=—77+ 133
6,(%) = =57 (133)
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m
- .
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=3 =3 =3

SSB PHASE NOISE L(f ) [dBc/Hz]

[
0
=3

107 107 10’ 10° 10° 10’
fm (Hzl
Fig. 7. Single sideband phase noise of the Colpitts oscillator shown in
Fig. 5.

where the £, are normalized white Gaussian noise sources
with correlation coefficients

<$i£j> = 81’.;-

Thus the system equations are of the type discussed above.
Note that those matrix elements G,;(X) which describe the
influence of the shot noise sources in the transistor explic-
itly depend on the state of the system via (115)—(117) and
(130)-(133) as discussed in Section II.

Application of the theory presented above results in the
phase noise spectrum FO(f). The power spectrum of the
oscillator circuit shown in Fig. 5 is proportional to the
correlation spectrum of the current through the load resis-
tor R;. For the interesting frequency range around the
center frequency of oscillation f, =292 MHz for the oscil-
lator shown above, we can neglect the coupling capacitor
C,. Therefore the power spectrum is directly proportional
to the correlation spectrum of the state variable u;, the
collector—emitter voltage at the transistor. Thus the single
sideband phase noise to carrier ratio L( f,,) is given by

L(f,) = F(£,) (135)

where f,, is the deviation from the center frequency f,.
This single sideband phase noise to carrier ratio for the
Colpitts oscillator shown above is shown in Fig. 7. As one
can see the spectrum consists of a Lorenzian line with the
3 dB bandwidth Af,;;=0.4-10"2 Hz The main portion
of this line width is caused by the conversion of amplitude
fluctuations into phase fluctuations. The additional terms
produced by the function G(|7|) are completely suppressed
by this Lorenzian line. Thus in the vicinity of the carrier
the spectrum is completely defined by the 3 dB bandwidth.
Therefore it is interesting to investigate the influence of the
various noise sources on the 3 dB bandwidth. In Table I
the contribution of every noise source is shown. The great-
est contribution, about 90 percent, is made by the shot
noise of the collector—emitter current i.z. Also the shot
noise of the reverse basis—collector current iz~ makes a
contribution of about 6.2 percent to the bandwidth. This is
caused by the lack of a countercoupling resistor in the

(134)
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TABLE I
CONTRIBUTION OF THE VARIOUS NOISE SOURCES TO THE 3 dB
BANDWIDTH Af; gp

o contribution relative
noise source to Af contribution
3dB

7 4

Ty 0.15-10" ' Hz 3.6-10 %
-6 W)

Upro 0.43-10" " Hz 1007 7%
4

LIS} 0.59-10" " Hz 1.5%

. —2

e 0.36-10 “ Hz 907%

b 0.09-1075 Hz 2.9

inc 0.25-1073 iz 6.2%

Afy 5 =04x10"2 Hz.

emitter terminal, which allows the transistor to operate for
a short time in the reverse direction. The thermal noise of
the resistors makes a contribution of only about 1.5 per-
cent to the bandwidth. From this example we can see that
the method described above is appropriate for simulating
the noise behavior of oscillator circuits, as is possible for
linear networks today.

VIL

The main result of this paper is the derivation of the
complete correlation spectrum of an oscillator in the low-
noise case. The methods used analytically for the deriva-
tion are well suited for numerical calculation of noise
spectra of technically relevant oscillators, as is shown by
the numerical example above. Thus with the derived proce-
dure the complete power spectrum of an oscillator can be
calculated from the lumped circuit model with the inherent
noise sources of the active and passive components. The
main effort of computation, the determination of the limit
cycle and the mapping matrices, can be reused for further
calculations with modified intensities of the noise sources.
The technmically important case of the influence of 1//¢
noise sources on the correlation spectrum of an oscillator
has not been covered in a tractable way so far. This is
because the production of 1/f* noise out of white sources
as is discussed in Section II for colored noise sources
would lead to a linear system of infinite dimension [28],
[29]. But 1/f“ noise sources also can be simulated within
this framework with almost no additional computational
effort, as will be shown in a subsequent paper.

CONCLUSIONS

APPENDIX

In this appendix we will prove the representation of the
fundamental matrix ¥ used before. We assume a nonlin-
ear dynamical system

¥=F(¥), <xeR" (A1)
with a stable limit cycle )?O(t) of period T°. Therefore the
time evolution of small deviations AX from the limit cycle
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is given by the time periodic linear differential equation
AX(t) = DF(°())A%(2) (A2)

with DF(x°) according to (14).

From the theory of linear differential equations with
periodic coefficients it is well known that there exists a set
of N linear independent solutions g,(z) to (A2) [30] with

7.(1) =W (1) (A3)
where 7, are the Floquet exponents and w,(¢) are periodic
vectors with period T°. The adjoint equation to (A2),

AZ(1)T == AZ(z)TDF (%°(¢)) (A4)
has the set of solutions 7 where
F(0)"=e5(1) (A5)

with the same Floquet exponents %, as above and the
07(¢) and w,(¢) fulfill the orthogonality relations

o ()W, (2) =9, (A6)

if the initial conditions 7,(0) are chosen according to (A6).
Here we will not consider the case of a non-semisimple
fundamental matrix ¥(7°0), which leads to multiple
Floquet exponents, since semisimplicity is a generic prop-
erty of the matrices in RY XR” [31]. That means that
almost all matrices are diagonalizable.

From (A3) and (A6) one can easily see that the funda-
mental matrix E(¢, s) of (A2) is given by

N
E(t,5) = X e Iw (1) 5] (s).
=1

Thus E(¢, s) maps the initial value AX(s) onto the solution
AX(¢) of (A2):

(A7)

AX(t) =E(z,s)Ax(s). (A8)
. As can be seen from (Al) and (A2) by differentiation of
%%1), X°(t) can be taken as w,(¢) with corresponding
Floquet exponent 7, =0. Therefore from (A6) we can
claim that the set 0,(¢) to Uy(#) completely spans the
orthogonal complement .4°(¢) to the tangent space at the
limit cycle ¥°(¢).

Equation (20) describes the time evolution of the normal
deviation AX  (?), which is given by application of the
projection operator P(t) according to (17):

AxX (1) = P(t) AX(2). (A9)
Therefore the fundamental matrix ¥(z,s) of (20) is given
by
¥(t,s)=P(t)E(t,s)

N
= 2 ™I ()5 (s)
=2
with iZ,(£) = P(1)w,(¢) and P(1)w,(t)=0. By differentia-

tion of ¥(z,s) with respect to ¢ one can show that the
relation

(A10)

V(1,s)=V(t)¥(t,s) (A11)
is fulfilled. Also the orthogonality relations between the
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vectors #; and U; are saved:

5(6)d,(1) = [P(1)T(1)] "%, (¢) = (1)

T‘T’j(t) =4, ;
(A12)

for2<i, j<N.
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